Paper of the Week


Tightly Bound Excitons in Monolayer WSe2

Physical Review Letters 113, 026803, 2014

Keliang He, Nardeep Kumar*, Liang Zhao, Zefang Wang, Kin Fai Mak, Hui Zhao*, and Jie Shan
* KU Physics and Astronomy Authors

ABSTRACT

Exciton binding energy and excited states in monolayers of tungsten diselenide (WSe2) are investigated using the combined linear absorption and two-photon photoluminescence excitation spectroscopy. The exciton binding energy is determined to be 0.37 eV, which is about an order of magnitude larger than that in III–V semiconductor quantum wells and renders the exciton excited states observable even at room temperature. The exciton excitation spectrum with both experimentally determined one- and two-photon active states is distinct from the simple two-dimensional (2D) hydrogenic model. This result reveals significantly reduced and nonlocal dielectric screening of Coulomb interactions in 2D semiconductors. The observed large exciton binding energy will also have a significant impact on next-generation photonics and optoelectronics applications based on 2D atomic crystals.

Last Week's Paper


The University of Kansas prohibits discrimination on the basis of race, color, ethnicity, religion, sex, national origin, age, ancestry, disability, status as a veteran, sexual orientation, marital status, parental status, gender identity, gender expression and genetic information in the University’s programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Director of the Office of Institutional Opportunity and Access, IOA@ku.edu, 1246 W. Campus Road, Room 153A, Lawrence, KS, 66045, (785)864-6414, 711 TTY.